

ENPER-EXIST

Rating experiences in The Netherlands

Dick van Dijk **TNO Built Environment and Geosciences** The Netherlands

Content of the presentation

- Design rating new buildings
 - Mandatory national minimum overall EP requirements since 1995
 - Voluntary product labeling, link to EP regulations
- Asset rating:
 - From voluntary EP advice....
 - ...towards EP Certificate

Design rating new buildings

- In The Netherlands: Overall energy performance regulations since 1995
 - Building types:
 - Residential
 - Non-residential
 - Energy aspects:
 - Heating, cooling, ventilation, hot water and lighting
 - Including system performances
 - Including renewables (heating, cooling, electricity)
 - Monthly calculation method

→ Long-years experience

- Revisions each few years
 - Based on feed back, new developments
 - And due to tightened minimum levels each few years
 - Example for dwellings:
 - 1995: max. EPC = 1.4
 - 2006: max. EPC = 0.8

• Consequence:

- Gradually: an increased number of techniques are appreciated in the method
- → several new techniques penetrated in the market
- Method remained basically the same

Minimum EP regulations versus minimum product requirements?

• No!

- Minimum *product* requirements stimulate application of new products until minimum level
- Minimum *EP requirements* stimulate at product level also application of more innovative techniques
- If good energy performing products are wellrecognised in the calculation method: fast penetration possible
 - For instance via Product Labeling

Examples in The Netherlands

Experiences in e.g. NL with EP Regulations show for instance:

- ⇒HF Lighting became standard in Office Buildings
- ⇒High performance insulating glazings became standard
- ⇒Condensation boilers became standard in residential buildings

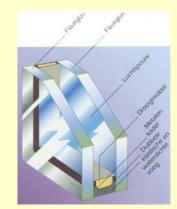
But (of course): level of requirements is important

Typical timeline (from experience in The Netherlands), in case of minimum EP-requirements

- 1. Introduction of innovative technologies on the market
 - No standard method yet => performance appreciated via "Principle of Equivalence"
- 2. Penetration grows slowly
 - More experience
 - Adoption of assessment method in standard procedures
 - (preferably in parallel) Set up of voluntary product labeling, linked to assessment method
- 3. Penetration grows rapidly
 - More experience in practice →
 - Optimisation: quality improvements
 - Further development: new labels
- 4. Tightened EP requirements

Conditions for product labeling

- -Should characterize specific product
- -Should categorize product performance in a clear way
- -Should be developed by market
- -Preferably: to be 1:1 recognised in EP calculation procedures
 - Limitation: national standard cannot refer directly to voluntary product labels: EU free market!
 - → best if label is directly linked to output of a national or CEN standard


Examples

- National label condensation boiler:
 - HR label ⇒ HR-100 label ⇒ HR-104 label
 ⇒ HR-107 label
- National label high performance glazing:

 $HR label \Rightarrow HR + label \Rightarrow HR + + label$

- High Performance ventilation heat recovery units
- Heat pumpsImproved performance

Example of ventilation heat recovery systems

Product development

Efficiency increased from 60% to 75% - 90% with the development of High performance heat recovery units

\Rightarrow Penetration rate

NL: in 2002 increase of 34% regard to 2001; 1 on 3 new residential buildings have balanced ventilation with heat recovery

⇒Costs

Reduced by increased penetration

⇒Performance

⇒Once penetration increased: further optimisation of EP and system May 10, 2006, spealoty

Conclusion: EP regulations DO cause changes in the building and technology market


EP regulations are an important market transformation mechanism, but the effectiveness depends on:

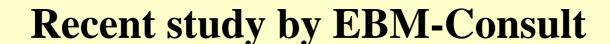
- Level of requirements
- Level of maintainability & compliance
- Development of regulations in step with the development of technology

• ...

- Voluntary energy performance rating/advice
 - Residential
 - In operation since several years (EPA)
 - Non-residential
 - Partly in operation/preparation (EPA-U)

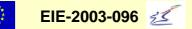
From EPA to EP certificate

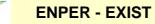
- EP-certificate requires re-thinking of objectives
- Issues:
 - Accuracy (=appreciate techniques and improvements)
 - Reproducibility (= consistency in rating)
 - Time effort needed for inspection (=related to complexity of gathering input data)
 - → Optimisation of cost effectiveness of inspection (data gathering) needed



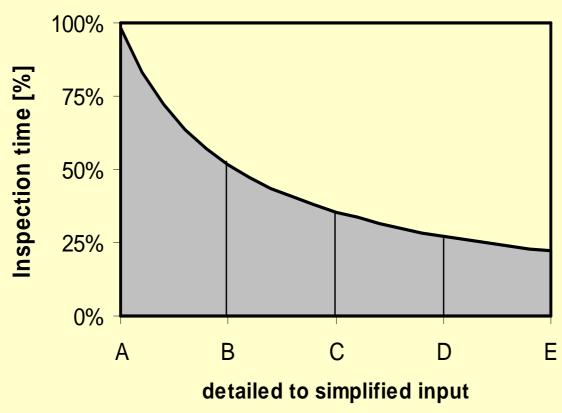
Recent study by EBM-Consult

- Five methods:
 - A-D: monthly calculation method:
 - A: detailed input
 - B: less detailed input
 - C: ..
 - D: ..
 - E: Set of reference buildings



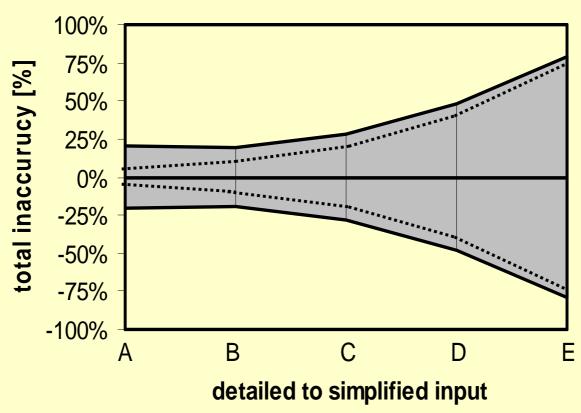


- Large sensitivity study:
 - Effect of methods A-E on:
 - Inspection time
 - Inaccuracy (taking into account likelyhood of errors made in input (guesses, mistakes)
 - Reproducibility

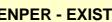


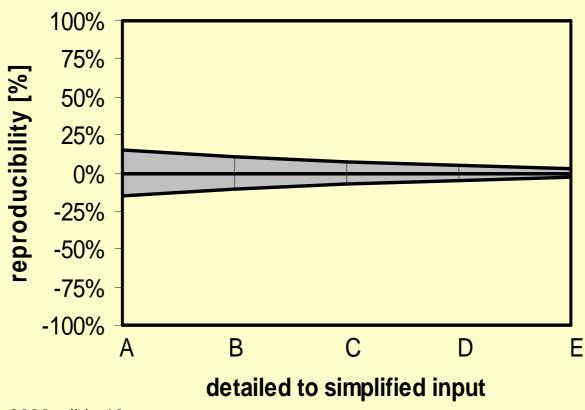
Results inspection time

inspection time / simplicity of input

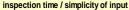


Results inaccuracy


total inaccuracy / simplicity of input



Results reproducibility (study by EBM-Consult)

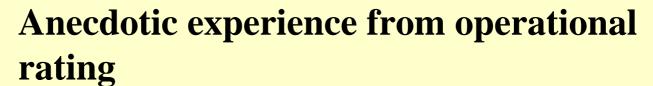

reproducibility / simplicity of input

%

LEVEL OF SIMPLIFICATION IS B - S

- Reduction of inspection (CAN)
- Inaccuracy and THE UNG STOR
- MAINTAITCH Bos than 7%
- nost of the exceptional ones
- Modest level of expertise consultants
- Simplified quality control

- New buildings:
 - Multi-year experience with national building regulations with minimum overall EP rating
 - Not too detailed monthly method is well-suited
 - Product labeling may be quite helpful for the user and the market
- EP-advice instrument is not automatically the optimum instrument for EP-certificate:
 - Cost-effectiveness can be significantly optimised by reconsidering the input data gathering



Bonus slide....

- If chosen to be corrected for climate, occupation, operation (from actual to standard conditions)
 - Sometimes complicated and doubtful correction factors introduced
 - With sometimes requiring the same input parameters as a (simple) calculation model would have required....
 - consider use of "validated modelling approach"